$\oint 8.1$ 6. Show that $\lim (\operatorname{Arctan} n x)=(\pi / 2) \operatorname{sgn} x$ for $x \in \mathbb{R}$.

Ans: (Pointwise convergence)
Let $g_{n}(x)=\operatorname{Arctan}(n x)$

- If $x=0$, then $g_{n}(0)=0 \rightarrow 0$ as $n \rightarrow \infty$
- If $x>0$, then $g_{n}(x)=\operatorname{Arctan}(n x) \rightarrow \frac{\pi}{2}$ as $n \rightarrow \infty$
- If $x<0$, then $g_{n}(x)=\operatorname{Arctan}(n x) \rightarrow-\frac{\pi}{2}$ as $n \rightarrow \infty$

Heme $\lim \left(g_{n}(x)\right)=\left(\frac{\pi}{2}\right) \operatorname{sgn} x \quad \forall x \in \mathbb{R}$

$$
=: g(x)
$$

16. Show that if $a>0$, then the convergence of the sequence in Exercise 6 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $(0, \infty)$.

Ans: Let $a>0$. Then

$$
\begin{aligned}
& \left\|g_{n}-g\right\|_{[a, \infty)}=\sup _{x \in[a, \infty)}\left|\operatorname{Arctan}(n x)-\frac{\pi}{2}\right|=\frac{\pi}{2}-\operatorname{Arctan}(n a) \\
\Rightarrow & \lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{[a, \infty)}=\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}-\operatorname{Arctan}(n a)\right)=0
\end{aligned}
$$

So $g_{n} \rightrightarrows g$ on $[a, \infty)$
OTOH, $\forall a>0$

$$
\left\|g_{n}-g\right\|_{(0, \infty)} \geqslant\left\|g_{n}-g\right\|_{(a, \infty)}=\frac{\pi}{2}-\operatorname{Arctan}(n a)
$$

Letting $a \rightarrow$ ot $^{+}$, we have

$$
\left\|g_{n}-g\right\|(0, \infty) \geqslant \frac{\pi}{2}-0=\frac{\pi}{2}
$$

So, $\left(g_{n}\right)$ does not converge (to g) uniformly on $(0, \infty)$

Problem 11.6 Determine whether the sequence $\left\{f_{n}\right\}$ converges uniformly on D.
a) $f_{n}(x)=\frac{1}{1+(n x-1)^{2}}$
$D=[0,1]$
b) $f_{n}(x)=n x^{n}(1-x) \quad D=[0,1]$
c) $f_{n}(x)=\arctan \left(\frac{2 x}{x^{2}+n^{3}}\right) \quad D=\mathbb{R}$
a) Note $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1}{1+(n x-1)^{2}}=\left\{\begin{array}{cc}0 & x \in(0,1] \\ \frac{1}{2} & x=0 .\end{array}\right\} \Rightarrow f(x)$
(We can actually conclude here that the convergence is not uniform, for otherwise the limit fum is also cts)

Lemma f.1.5 $\left(f_{n}\right)$ does not converge uniformly on A to f if

$$
\begin{gathered}
\exists \varepsilon_{0}>0, \exists \operatorname{subseq}\left(f_{n_{k}}\right) \text { of }\left(f_{n}\right), \exists\left(x_{k}\right) \in A \text { s.t } \\
\left|f_{n k}\left(x_{k}\right)-f\left(x_{k}\right)\right| \geqslant \varepsilon_{0} \quad \forall k \in \mathbb{N} .
\end{gathered}
$$

Take $\varepsilon_{0}=1$ and $x_{n}=\frac{1}{n} \quad \forall n \in \mathbb{N}$.
Then $\quad\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=\left|f_{n}\left(x_{n}\right)-0\right|=1 \geqslant \varepsilon_{0} \quad \forall n \in \mathbb{N}$.
Heme $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$

Problem 11.6 Determine whether the sequence $\left\{f_{n}\right\}$ converges uniformly on D.
a) $f_{n}(x)=\frac{1}{1+(n x-1)^{2}}$
$D=[0,1]$
b) $f_{n}(x)=n x^{n}(1-x) \quad D=[0,1]$
c) $f_{n}(x)=\arctan \left(\frac{2 x}{x^{2}+n^{3}}\right)$
$D=\mathbb{R}$
b) Note $\quad \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} n x^{n}(1-x)=0=: f(x) \quad \forall x \in[0,1]$.

$$
\begin{aligned}
& \left(\left\|f_{n}-f\right\|_{[0,1]}=?\right) \\
& \forall n \geqslant 2, \\
& \\
& \text { So } \\
& \\
& f_{n}^{\prime}(x)=n^{2} x^{n-1}(1-x)+n x^{n}(-1)=n x^{n-1}(n-(n+1) x) \\
& f_{n}^{\prime}(x)=0 \Leftrightarrow x=0 \text { or } x=\frac{n}{n+1 .}
\end{aligned}
$$

Then f_{n} attains max on $[0,1]$ at

$$
\left.\begin{array}{ccc}
x=0, & x=1 & \text { or } \\
f_{n}(0)=0 & f_{n}(1)=0 & f_{n}\left(\frac{n}{n+1}\right)=\left(\frac{n}{n+1}\right. \\
n+1
\end{array}\right)^{n+1}
$$

Thus $\left\|f_{n}-f\right\|_{[0,1]}=f_{n}\left(\frac{n}{n+1}\right)=\left(\frac{n}{n+1}\right)^{n+1}$

$$
\Rightarrow \quad \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{[0,1]}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)^{n+1}=\frac{1}{e} \neq 0
$$

Thanfre $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$

Problem 11.6 Determine whether the sequence $\left\{f_{n}\right\}$ converges uniformly on D.
a) $f_{n}(x)=\frac{1}{1+(n x-1)^{2}}$
$D=[0,1]$
b) $f_{n}(x)=n x^{n}(1-x) \quad D=[0,1]$
c) $f_{n}(x)=\arctan \left(\frac{2 x}{x^{2}+n^{3}}\right)$ $D=\mathbb{R}$
c) Note $\quad \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \arctan \left(\frac{2 x}{x^{2}+n^{3}}\right)=0=: f(x) \quad \forall x \in \mathbb{R}$.

As in $b 7, f_{n}^{\prime}(x)=\frac{1}{\left(\frac{2 x}{x^{2}+n^{3}}\right)^{2}+1} \cdot \frac{2\left(x^{2}+n^{3}\right)-2 x(2 x)}{\left(x^{2}+n^{3}\right)^{2}}$

$$
\begin{aligned}
& =\frac{2 n^{3}-2 x^{2}}{\left(x^{2}+n^{3}\right)^{2}+4 x^{2}} \\
\Rightarrow f_{n}^{\prime}(x)=0 & \Leftrightarrow x= \pm n \sqrt{n}
\end{aligned}
$$

Since $\left|f_{n}(x)\right| \rightarrow 0$ as $x \rightarrow \pm \infty$, we have

$$
\sup \left\{\left|f_{n}(x)-0\right|: x \in \mathbb{R}\right\}=\left|f_{n}(\pm n \sqrt{n})\right|=\arctan \left(\frac{1}{n \sqrt{n}}\right)
$$

Thus $\quad\left\|f_{n}-f\right\|_{\mathbb{R}}=\arctan \left(\frac{1}{n \sqrt{n}}\right) \rightarrow 0 \quad \cos n \rightarrow \infty$
Heme (f_{n}) converges uniformly on \mathbb{R} to $f \equiv 0$
$\oint 8.2$ 12. Show that him $\int_{1}^{2} e^{-n x^{2}} d x=0$.

Ans: Note $\lim _{n \rightarrow \infty} e^{-n x^{2}}=0 \quad \forall x>0$
If we can show that the convergence is uniform, then, by The 8.2.4,

$$
\lim _{n \rightarrow \infty} \int_{1}^{2} e^{-n x^{2}} d x=\int_{1}^{2} 0 d x=0
$$

Indeed, $\forall x \in[1,2]$,

$$
\begin{aligned}
& e^{n x^{2}} \\
&=1+\left(n x^{2}\right)+\frac{\left(n x^{2}\right)^{2}}{2!}+\cdots \\
& \geqslant n x^{2} \\
&\left.\Rightarrow \quad 0 \leqslant e^{-n x^{2}} \leqslant \frac{1}{n x^{2}} \leqslant \frac{1}{n} \quad \text { (Since } x \in[1,2]\right) \\
& \text { So } e^{-n x^{2}} \Rightarrow 0 \quad \text { on }[1,2]
\end{aligned}
$$

By Thy 8.2.4

$$
\lim _{n \rightarrow \infty} \int_{1}^{2} e^{-n x^{2}} d x=\int_{1}^{2} 0 d x=0
$$

EX Let f be a continuously differentiable function defined on (a, b) (ie. f^{\prime} is continuous). Consider the sequence (f_{n}):

$$
f_{n}(x)=n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)
$$

Show that f_{n} converges uniformly to f^{\prime} in any closed subinterval $[c, d]$ of (a, b).

Pf: Idea: By MVT, $f_{n}(x)=\frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}-0}=f^{\prime}(\xi)$
for some $\xi=\xi(n, x) \in\left(x, x+\frac{1}{n}\right)$
So $\left|f_{n}(x)-f^{\prime}(x)\right|=\underbrace{\left|f^{\prime}(\xi)-f^{\prime}(x)\right|}$
small since f^{\prime} is cts,
hence unitombly cts on any $[c, d] \subseteq(a, b)$
Becareful of the order!

Let $\varepsilon>0$. Let $l=\frac{d+b}{2}$.
Since f^{\prime} is cts and heme uniformly cts on $[c, l]$, $\exists \delta>0$ s.t. if $u, v \in[c, l]$ and $|u-v|<\delta$, then $\quad\left|f^{\prime}(u)-f^{\prime}(v)\right|<\varepsilon$
Take $\delta^{\prime}=\min \{l-d, \delta \mid>0$.
Choose $N \in \mathbb{N}_{N}$ si $\quad 1 / w<\delta^{\prime} \quad\left(\right.$ so $\left.x \in[c, d] \Rightarrow x+\frac{1}{N} \in[c, l]\right)$ $\forall x \in[c, d], \forall n \geq N$, by MVT,

$$
\begin{array}{r}
\exists \xi=\xi(n, x) \in\left(x, x+\frac{1}{n}\right) \subseteq[c, l] \\
f^{\prime}(\xi)=n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)=f_{n}(x)
\end{array}
$$

Sine $x, \xi \in[c, l]$ and $|x-\zeta|<\frac{1}{n} \leq \frac{1}{\omega}<\delta^{\prime}$, we have

$$
\left|f_{n}(x)-f^{\prime}(x)\right|=\left|f^{\prime}(s)-f^{\prime}(x)\right|<\varepsilon \quad \text { by (\#) }
$$

Therefore $f_{n} \Rightarrow f^{\prime}$ on $[c, d]$

